If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+11=59
We move all terms to the left:
3x^2+11-(59)=0
We add all the numbers together, and all the variables
3x^2-48=0
a = 3; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·3·(-48)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*3}=\frac{-24}{6} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*3}=\frac{24}{6} =4 $
| 8.2=y/2 | | 12-5b=15b=33-24 | | 2x+4*(x-2)=3 | | 1.4x+x=500 | | 21-x=15x-5 | | x-3.2=5.5 | | 4y=4/9 | | H=-d^2+12d+5 | | x-3.2=55 | | 55+x=150 | | X+2x=3-1 | | -86=(-8p)+2 | | x•7=16 | | 3(x+2)+2(x-1)=(5x+7) | | 2/3z+4=24-z | | -5y+6=26 | | 36=6-5b | | -6r=-2r | | -x-8=−x−8=−4x−23 | | z•7=16 | | 1=6(1—p) | | 1/2x=-3.5 | | -k-4=(-19) | | π/3(20-3h^2)=0 | | 9z-15=9-3z | | 7x+5=3x-3x+9+5 | | 48=8y-9 | | -2y-5+4y=-5+2y | | (π/3)(20-3h^2)=0 | | 31=(-3v)+10 | | 15x+6=5x+66 | | 5+8x=-67 |